
Building Autograders for Open-Ended Assignments
in a Computer Science MOOC

Arunima Suri, University of Illinois Urbana - Champaign
July 26th, 2024

Faculty Mentors:
Dr. Susan Rodger, Duke University

Dr. Kristin Stephens-Martinez, Duke University
Yesenia Velasco, Lecturer, Duke University

Undergraduate Team:
Nikita Agarwal, University of Wisconsin - Madison

Kevin Alvarenga, Duke University

1 Motivation
Open-ended assignments help students to be creative and enhance their critical thinking

skills. These assignments encourage students to apply their existing knowledge in innovative
ways. However, it is time consuming for instructors to manually grade these open-ended
assignments. It is beneficial, especially in large scale courses, to have autograders that can
provide immediate feedback and allow students to reflect on their project in a timely manner.
This efficiency not only enhances the student learning but also alleviates the workload on
instructors, enabling them to focus more on creating the lecture content. While there are many
benefits to using autograders, most of these autograders are meant for assignments with a single
goal/end state. This can work well in higher level CS courses where there is one main objective,
or one way to solve a specific problem. However, open-ended assignments, which allow for
more creativity and can lead to more diversity in computing, are common in introductory
Computer Science courses. There is a gap in research on autograders for these types of
open-ended assignments.

2 Background and Related Work

2.1 The Use of Open-Ended Assignments
Significant research has been done on using open-ended assignments in introductory

Computer Science classes to see how they can impact student motivation, self-efficacy,
engagement, grades, and more. When referring to open ended assignments, different authors use
slightly different definitions. A general consensus is that an open-ended assignment allows
students to make their own choices and decisions about aspects of the project, which results in
each student having their own solution to a general problem [9]. For example, an open-ended



assignment may ask a student to create a game given general requirements such as: the game
must have one to five user inputs, each input may only take in the numbers one or two, once the
game is over the program should print if the game is a win or a loss, the program should ask the
user if they want to play again, and the program should display a summary of the game rounds
once the user chooses to not play again. From these general requirements, students could create
games such as guess the number, guess if the number is odd or even, solve a maze, implement
wandering letters, and more!

The use of open-ended assignments is motivated by many different learning theories,
including the idea that students build knowledge by looking at prototype models, the
constructivist learning theory, and student metacognition [12]. Open-ended assignments have
shown to have a positive impact on student motivation, confidence level, and satisfaction [9].
They also have had no impact on student grades, self-efficacy, or attention span. Thus, the
research shows that open-ended assignments, at the very least, do not have potential negative
effects. [9].

Open-ended assignments can be beneficial, but only if implemented correctly. There is
still the potential issue of students having a lack of interest, which can affect their learning. In
2018, researchers were curious if letting students choose their assignment would aid with
learning. After examining an introductory CS class, researchers noticed that many students did
not enjoy the class because the assignments did not align with their interests. To address this, the
researchers designed 5 open-ended assignments for students to choose from and were then able
to notice that student enjoyment and strength on core concepts increased [1]. However, it was
also mentioned that the grading process for these assignments required a significant amount of
work and was tedious for instructors. The researchers noticed that incorporating some form of
choice was beneficial for the students in their learning, while acknowledging that there is still
room for improvement in the actual grading process. Therefore, the use of choice in these
courses has the potential to provide benefits to the student, but there is still no path to designing
autograding capable of evaluating these assignments.

2.2 The Efficacy of Autograders
Autograders have been helpful in courses with a large roster of students as they reduce

the time needed for grading, give clear feedback, and can evaluate complex equations much
quicker. Also, autograders can be used to help guide students to improved solutions with less
errors. In terms of autograding open-ended assignments, research shows that generating hints for
these assignments can be difficult due to variability in programs. However, there have been cases
in which instructors were able to use student data to generate hints/feedback for the students,
which helped maintain the core of open-ended assignments while ensuring that students still
received the help they needed [8]. However, there has been less research conducted on the
student side of things. Student perceptions on autograders can affect their performance,
experience, and approach to completing assignments with some students specifically stating that
they would have had a better experience with an autograder if they could directly cater their



programs for it [5]. However, this negates the benefits of using open-ended assignments as the
main purpose is to promote creativity and new approaches.

A different approach to autograding was taken in 2022, where researchers developed an
algorithm that could grade code based on different aspects, such as lines of code, spacing,
variable names, string count, etc. [11]. This helped with course assignments that had visual and
graphical output, which typically would be difficult to grade using an autograder. The algorithm
focused on classifying the elegance of a student’s code, which, while important, is not a
sufficient criteria to use for grading open-ended assignments. This algorithm did not take into
account the actual output of a student’s code, which is the main concern when it comes to
open-ended assignments.

Given the previous research out there, it is clear that there lacks an integration of
autograders into open-ended assignments for introductory computer science classes. And with
these classes having larger and larger student enrollment, assignments simply cannot be graded
by hand. Therefore, it is critical that autograders be introduced for open-ended assignments as
open-ended assignments are an important way to ensure that students are able to be creative and
stay motivated as they complete assignments. In other words, the main problem lies in a lack of
existence of autograders that can handle student creativity, so our work aims to fill this gap
through building and documenting autograders for open-ended assignments [10].

3 Implementation
The main focus of my work was using python, and its testing library,

pytest, to build autograders for open-ended assignments for an introductory college-level
computer science course in Coursera. Coursera is an online course system that allows users to go
at their own pace. Also, it allows for instructors to create their own grading systems for particular
assignments. My team and I created multiple autograders for assignments in the course and
implemented them directly into Coursera. In using open-ended assignments for the course,
students would be able to use their creativity and stay engaged with the programs they write, and
by using autograders, the assignments would be automatically graded so that instructors do not
need to take extra time to grade hundreds of student solutions. There is currently little research
that focuses on designing an autograder that can effectively grade and provide feedback for more
creative open-ended assignments.

3.1 Autograder Creation
Each lab and assignment has a specific set of requirements that students are given as a

guideline for how their work will be evaluated. These requirements are split into two categories:
satisfactory and exceeds expectations, with the satisfactory requirements making up 80% of the
points and the exceeds expectations covering the last 20%.

The autograder build was split up to reflect this breakdown, with three different sets of
test cases: pre-tests, required tests, and exceptional tests. The pre-tests consisted of checking the
student code for baseline issues, such as compile time errors, runtime errors, and too few or too



many calls to user input. The required and exceptional tests were written to essentially reflect the
set of requirements laid out in the lab checklist for satisfactory and exceeds expectations,
respectively. The test cases were written using mainly the pytest library, with the help of some
other libraries such as regular expressions. The order that the test cases were written in reflected
the order that the student code would be tested against those cases, with the student receiving the
message of the first test case that they failed.

In order to validate the test cases, sample student solutions were crafted to reflect typical
logical or syntax errors students could make when writing their code. The student solutions were
run against the test cases to ensure that students would be given the correct message for the first
test case that they failed so that they could improve on their solutions in a step by step manner.

Once the autograder was validated to work properly in admin mode, it was then tested in
a student view to ensure that the Coursera platform was connecting with the autograder as
intended. In this process, the starter file for the student solution was also generated so that
students would have a foundation to build their code off of. This especially became important
when working with functions as it was critical to ensure students had the correct function headers
in their code.

3.2 Overview of Specific Autograders
Decision Advisor with Randomness
This autograder was created in collaboration with the other undergraduate researchers on the
team. The lab tests a student’s ability to work with boolean expressions, conditional statements,
and the random library. This autograder followed the typical build process, with the main
challenge being how to account for the randomness of the student code.

Art Generator with While and Indexing Part 2
This lab tests a student’s ability to properly implement a while loop and its stopping condition as
well as verifying user input and correctly indexing into a string. The student’s code has to
generate an art design based on user input that provides a string of alternating characters and
numbers to produce a multi-line pattern.

Debugging
This autograder was created in collaboration with the other undergraduate researchers on the
team. In this lab, students are given incorrect starter code for a temperature converter and asked
to debug it. The code includes logical errors as well as syntax errors that the student needs to
identify and fix. Even though the lab came with a partial solution, the autograder build followed
the regular process.

Accumulator Pattern
This lab asks students to accumulate user inputs and produce three separate statistics regarding
the data: the sum, the minimum, and a third statistic of their choosing. In doing so, the students



are tested in their ability to properly implement while loops, conditionals, and the accumulator
pattern. The challenge for this autograder was in identifying that a student correctly included a
third statistic without knowing what the statistic would be, and this was tested using regular
expressions to extract all the numbers from the printed output and removing the sum/minimum to
ensure a third number existed. Moreover by giving the student code a variety of inputs, the tests
also had to ensure that the third statistic actually changed based on the input and did not just
consist of a hard coded value.

Quiz Generator
This is the first lab of course 2 of the Coursera course, which means that it includes functions.
This changed the entire autograder approach, not in terms of the general structure, but in terms of
how the individual test cases were written because pytest has a different approach to testing
functions. With this autograder came learning how to implement parameterization as well as how
to capture not only the return value of a function but also any printed output that was produced
while the function was run. The lab itself has three functions the student needed to implement to
resemble the creation of a quiz that recorded the user’s score.

Debugging Functions
This lab was similar to the debugging lab from course 1, but it involved functions. The lab also
has three different starter files for the student, which ultimately was decided to be split into three
separate autograders, one for each file. Once the decision was made to split the lab up into
different autograders, the build process itself was very straightforward. The mini labs are
debugging functions that collect vowels, print n-grams (sets of characters), and that identify the
biggest of three numbers.

Temperature Visualizer
This was actually an assignment, not a lab, which means it is a larger task that has a more
cumulative approach to see if students can apply multiple weeks of learning into one assignment.
The students are asked to essentially create a set of functions that resemble the process of making
a temperature blanket, with students reading in data from a csv file. The additional layer of
difficulty came in as students are also required to create a set of test functions to test that their
own code worked. This meant the autograder not only had to test the students' functions but also
the students’ test functions to make sure both files of functions met the requirements outlined in
the lab. This process required learning a lot about the pytest mock functionality and how to apply
that for mocking csv open and mocking calls to user input.

4 Proposed Research Question
Because the Coursera course is still in its creation phase, the focus of the work was not on

data collection and data analysis. That being said, once the course is launched and data can be



collected, there are many opportunities for discovery on how open-ended assignments and the
use of autograders impact student performance, experience, and more. One such area of interest
for me is using the course to identify the differences between satisficers and maximisers in terms
of what attributes can be linked to student performance in open-ended CS MOOCs?

4.1 Background for Potential Research Question
The post pandemic world has seen significant changes in the way that both students and

instructors approach learning. Online and blended learning styles have become significantly
more popular, especially in Computer Science, due to their ease of use and ability to
accommodate significantly more users. In addition, the field of computer science, itself, has
greatly grown in popularity with the introduction of AI, the increased use of programming in
various other academic fields, and more generally the rise of reliance on technology. And with
this increase in interest, there is an increase in demand for introductory Computer Science
courses. Massive Open Online Courses (MOOCs) can easily fill this demand because they are
readily available, flexible, and have a low barrier to entry.

With the ease that comes with learning through MOOCs, also comes a multitude of
reasons why a specific individual may choose to enroll in an online course. These can range
anywhere from a general interest in learning and receiving formal recognition for their
knowledge to making social connections and preparing for future college courses or job
prospects [2].

However just because an individual chooses to enroll in a MOOC course does not
necessarily mean that they will choose to complete the course to the best of their ability, or even
more simply, complete the course. This phenomenon lies as a consequence of there being less
stakes in completing an online course, especially for courses that individuals do not pay for. That
being said, many individuals do still choose to put in a significant amount of effort and complete
online courses to the best of their ability. Essentially, enrollment in MOOCs can be categorized
into those who choose to put in their full effort (maximisers), those who put in the bare minimum
to pass the course (satisficers), and those who do not complete the course. In the case of this
study, we will be looking specifically at the maximisers and the satisficers and what different
attributes separate the two categories when it comes to an Open-Ended CS MOOC.

4.2 Motivation for Potential Research Question
Differentiating between the maximisers and satisficers for a CS MOOC will allow

educators to better understand the individuals who take their courses, which in turn can inform
how they choose to design their lesson plans. Educators are able to choose the criteria students
need to meet in order to pass a specific course, so in knowing how different groups of individuals
engaged with their lessons, they can cater the assignment requirements to specifically target
certain groups. In turn, educators would be able to try their hardest to ensure that students come
out of the course having learned certain skills.



Moreover by conducting this study in an Open-Ended MOOC, it will allow educators to
understand if using Open-Ended versus Closed-Ended assignments has had any impacts on the
typical trends that seem to be present in CS MOOCs in terms of how motivation, gender, race,
among many other factors, impact completion rates. This could give insight into how students
may engage differently depending on the types of assignments they are given.

4.3 Related Work
Previous research has been conducted for Computer Science MOOCs that look at course

attributes and how they correlate to course engagement and completion rates. One major aspect
that has shown major links to student success in online courses is active participation in course
forums. Active participation refers to posting original comments, commenting on others’ posts,
or viewing the forum posts, and it meant an individual had a higher chance of staying engaged
longer in the course [3]. Broken down even further, students who posted on the forum persisted
longer in courses than students who did not post, and students who visited the forum persisted
longer than students who chose to not view the forum page at all [2]. Gender has also shown to
play an interesting role in CS MOOC persistence, with men being more likely to persist longer in
courses than women [4].

Additionally an individual’s motivation behind taking a CS online course has been linked
to course completion rates. When broken down into clusters (opportunity motivated, success
motivated, interest motivated, and over-motivated), opportunity motivated individuals had higher
completion rates than success motivated individuals, and the rest of the categories showed no
significant statistical differences [7].

4.4 Methods
Course Description
The course that is used for this study is a python-based CS-1 level course hosted on the Coursera
platform. It is meant for users with little to no programming experience, making it accessible to a
wide range of audiences. The course, itself, is broken into 4 different series, which sequentially
get more advanced as the user begins to build on their learned skills. The students are assessed
on their learning using weekly multiple-choice quizzes, labs, and assignments. The labs and
assignments are open-ended, allowing for student creativity, and are also autograded, providing
users with instant feedback messages for their programs. In order to pass the labs and
assignments, users must score at least 80% of the total points, with the score more heavily
weighted on meeting the fundamental learning objectives of each task and less weighted on the
additional elements that allow for more complexity.

Data Collection
The data for this study includes (1) survey data collected prior to the beginning of each

series in the course, (2) scores on labs and assignments (as a percentage), (3) number of
submissions for labs and assignments, and (4) percentage of completion for the course.



The Pre-Course Survey: Participants of the survey are asked basic demographic
questions, their prior programming experience, their motivations for taking the course,
and their academic background. Completion of the survey is optional and does not affect
a user’s experience during any part of the course. For programming experience, users are
given a scale of 1 to 5 from ranging from no experience to having two plus years of
experience. Motivation is gauged using the Online Learning Enrollment Intentions Scale
(Appendix A), in which users are asked to select the top two reasons that applied to them.
For academic background, users are given a set of options (Appendix B) and asked to
select the option that applies best for them.

Lab and Assignments Scores: Scores for each lab and assignment are a percentage based
on the number of autograder test cases the participant is able to pass. Scores for
labs/assignments that lack a variety of data (i.e. essentially all students score near a
100%) should be excluded from the data set.

Number of Submissions: Number of submissions for each lab/assignment is the count of
the number of times the user hit the submit button and received feedback from the
autograder.

Percent Completion: Participants’ percent completion for each series in the course is the
number of tasks they completed out of the total number assigned. Tasks include quizzes,
labs, and assignments.

Data Analysis
The first step to data analysis for this study would be to determine the threshold that

separates a student from being a satisficer versus a maximiser. By using statistical mapping to get
a spread of the average lab and assignment scores, distributions can be made for each of the four
course series. In viewing the data spread, a line can essentially be drawn for each series as to
where the threshold lies, in which a student goes from being a satisficer to a maximiser. The
reason to split this data differently for each series is that some series may have more individuals
who were able to complete all the coursework than others. All the individuals who did not
complete all the assignments for a series are not included in the distribution of the average scores
because their average would be disproportionately lower than it should be.

Once the line is drawn between the satisficers and the maximisers, the attributes
identified using the pre-course survey can be compared. This will give insight into what
academic backgrounds, motivation groups, prior-experience levels, etc were more likely to be in
one category or the other.



5 Conclusion
Autograding open-ended assignments for introductory Computer Science courses opens

up a whole new era of advancement for Computer Science education. Not only does it ensure
that students are allowed the freedom to be creative and innovative in their programming
solutions, but it also ensures that educators are not bogged down in grading assignments. This
will allow educators more time to develop curricula, work on research, or focus on any other
aspect of their jobs. That being said because this is a new area of research, the effects on student
learning are yet to be seen. As data is collected and analyzed, it will shed light on the impacts on
student motivation, retention, completion, and more. While streamlining educators' work load is
important, making sure that student learning is not negatively impacted is even more critical.

6 Appendix
Appendix A
Online Learning Enrollment Intentions (OLEI) Scale [6]
Why did you enroll in this course? (Pick two that apply)

- General interest in the topic
- Relevant to job
- Relevant to school or degree program
- Relevant to academic research
- For personal growth and enrichment
- For career change
- For fun and challenge
- To meet new people
- To experience an online course
- To earn a certificate/statement of accomplishment
- Course offered by prestigious university/professor
- To take with colleagues/friends
- To improve my English skills

Appendix B
Which area best describes your academic background? (Pick one)

- Computer Science
- Engineering
- Physical Sciences
- Life Sciences
- Social Sciences
- Business
- Math
- Humanities



- Arts
- Other

7 References
[1] Sohail Alhazmi, Margaret Hamilton, and Charles Thevathayan. CS for All: Catering to
Diversity of Master’s Students through Assignment Choices. ACM Technical Symposium on
Computer Science Education, 2018.

[2] R. Wes Crues, Nigel Bosch, Carolyn J. Anderson, Michelle Perry, Suma Bhat, and
Najmuddin Shaik. Who they are and what they want: Understanding the reasons for MOOC
enrollment. International Conference on Educational Data Mining, 2018.

[3] R. Wes Crues, Nigel Bosch, Michelle Perry, Lawrence Angrave, Najmuddin Shaik, and Suma
Bhat. Refocusing the lens on engagement in MOOCs. ACM Conference on Learning at Scale,
2018.

[4] R. Wes Crues, Genevieve M. Henricks, Michelle Perry, Suma Bhat, Carolyn J. Anderson,
Najmuddin Shaik, and Lawrence Angrave. How do Gender, Learning Goals, and Forum
Participation Predict Persistence in a Computer Science MOOC? ACM Transactions on
Computing Education, 2018.

[5] Silas Hsu, Tiffany Wenting Li, Zhilin Zhang, Max Fowler, Craig Zilles, and Karrie
Karahalios. Attitudes Surrounding an Imperfect AI Autograder. CHI Conference, 2021.

[6] René F. Kizilcec and Emily Schneider. Motivation as a Lens to Understand Online Learners:
Toward Data-Driven Design with the OLEI Scale. ACM Transactions on Computer-Human
Interaction, 2015.

[7] Piret Luik and Marina Lepp. Are Highly Motivated Learners More Likely to Complete a
Computer Programming MOOC? International Review of Research in Open and Distributed
Learning, 2021

[8] Thomas W. Price, Yihuan Dong, and Tiffany Barnes. Generating Data-Driven Hints for
Open-Ended Programming. International Educational Data Mining Society, 2016.

[9] Sadia Sharmin, Daniel Zingaro, and Clare Brett. Weekly Open-Ended Exercises and Student
Motivation in CS1. Koli Calling, 2020.



[10] Sadia Sharmin, Daniel Zingaro, Lisa Zhang, and Clare Brett. Impact of Open-Ended
Assignments on Student Self-Efficacy in CS1. ACM Conference on Global Computing
Education, 2019.

[11] Sirazum Munira Tisha, Rufino A. Oregon, Gerald Baumgartner, Fernando Alegre, and Juana
Moreno. An Automatic Grading System for a High School-Level Computational Thinking
Course. International Workshop on Software Engineering Education for the Next Generation,
2022.

[12] Tammy Vandegrift. Encouraging Creativity In Introductory Computer Science Programming
Assignments. 2007 Annual Conference Exposition, 2007.


